Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Avouac, J-P (Ed.)The Pelona–Orocopia–Rand (POR) schists were emplaced during the Farallon flat subduction in the early Cenozoic and now occupy the root of major strike-slip faults of the San Andreas Fault system. The POR schists are considered frictionally stable at lower temperatures than other basement rocks, limiting the maximum depth of seismicity in Southern California. However, experimental constraints on the composition and frictional properties of POR schists are still missing. Here, we study the frictional behavior of synthetic gouge derived from Pelona, Portal, and Rand Mountain schist wall rocks under hydrothermal, triaxial conditions. We conduct velocity-step experiments from 0.04 to 1 μm/s from room temperature to 500ºC under 200 MPa effective normal stress, including a 30 MPa porefluid pressure. The frictional stability of POR schists in the lower crust is caused by a thermally activated transition from slip-rate- and state-dependent friction to inherently stable, rate-dependent creep between 300ºC and 500ºC, depending on sample composition and slip-rate. The mineralogy of POR schists shows much variability caused by different protoliths and metamorphic grades, featuring various amounts of phyllosilicates, quartz, feldspar, and amphibole. Pelona and Portal schists exhibit a velocity-weakening regime enabling the nucleation and propagation of earthquakes when exhumed in the middle crust, as in the Mojave section of the San Andreas Fault. The contrasted frictional properties of POR schists exemplify the lithological control of seismic processes and associated hazards.more » « lessFree, publicly-accessible full text available August 11, 2026
-
Abstract The role of upper‐plate faulting in the seismic cycle of large megathrust earthquakes remains poorly understood. We use quasi‐dynamic numerical simulations of seismic cycles to analyze the interaction between crustal faulting and the foreshock sequence of the 2014 Iquique (Mw 8.2) earthquake in Northern Chile. Multi‐cycle models incorporating upper‐plate faulting align better with coseismic displacements, replicating events akin to the Iquique earthquake. Upper‐plate faulting significantly influences foreshock seismicity and deformation patterns. By calibrating the average hydraulic state—varying the effective normal stress—along the megathrust with pre‐earthquake seismicity, we find that lower pore pressure ratios result in more seismicity before the mainshock. This implies that the hydraulic state of the megathrust is critical for foreshock activity. This comprehensive modeling approach underscores the importance of the mechanical interplay between the megathrust and upper‐plate faults in precursory sequences of large subduction zone earthquakes.more » « less
-
Abstract The constitutive behavior of faults intervenes in virtually every aspect of the seismic phenomenon but is poorly understood, particularly regarding how effective normal stress affects the boundaries of the seismogenic zone. Here, we explore the mechanical properties of Pelona schist, Westerly granite, phyllosilicate‐rich gouge, gabbro, hornblende, lawsonite blueschist, montmorillonite, and smectite in hydrothermal conditions at various confining pressures and explain the laboratory observations with a physical model of fault friction. The thermobaric activation of healing and deformation mechanisms explains the boundaries of unstable slip as a function of slip‐rate, temperature, and effective normal stress for a given lithology. The constitutive law affords extrapolation of laboratory data in the conditions relevant to seismic cycles throughout the crust, explaining the focus of large earthquakes in collision, subduction, and continental and oceanic transform settings.more » « less
-
null (Ed.)SUMMARY The Eastern Mediterranean is the most seismically active region in Europe due to the complex interactions of the Arabian, African, and Eurasian tectonic plates. Deformation is achieved by faulting in the brittle crust, distributed flow in the viscoelastic lower-crust and mantle, and Hellenic subduction, but the long-term partitioning of these mechanisms is still unknown. We exploit an extensive suite of geodetic observations to build a kinematic model connecting strike-slip deformation, extension, subduction, and shear localization across Anatolia and the Aegean Sea by mapping the distribution of slip and strain accumulation on major active geological structures. We find that tectonic escape is facilitated by a plate-boundary-like, trans-lithospheric shear zone extending from the Gulf of Evia to the Turkish-Iranian Plateau that underlies the surface trace of the North Anatolian Fault. Additional deformation in Anatolia is taken up by a series of smaller-scale conjugate shear zones that reach the upper mantle, the largest of which is located beneath the East Anatolian Fault. Rapid north–south extension in the western part of the system, driven primarily by Hellenic Trench retreat, is accommodated by rotation and broadening of the North Anatolian mantle shear zone from the Sea of Marmara across the north Aegean Sea, and by a system of distributed transform faults and rifts including the rapidly extending Gulf of Corinth in central Greece and the active grabens of western Turkey. Africa–Eurasia convergence along the Hellenic Arc occurs at a median rate of 49.8 mm yr–1 in a largely trench-normal direction except near eastern Crete where variably oriented slip on the megathrust coincides with mixed-mode and strike-slip deformation in the overlying accretionary wedge near the Ptolemy–Pliny–Strabo trenches. Our kinematic model illustrates the competing roles the North Anatolian mantle shear zone, Hellenic Trench, overlying mantle wedge, and active crustal faults play in accommodating tectonic indentation, slab rollback and associated Aegean extension. Viscoelastic flow in the lower crust and upper mantle dominate the surface velocity field across much of Anatolia and a clear transition to megathrust-related slab pull occurs in western Turkey, the Aegean Sea and Greece. Crustal scale faults and the Hellenic wedge contribute only a minor amount to the large-scale, regional pattern of Eastern Mediterranean interseismic surface deformation.more » « less
An official website of the United States government
